

Abstracts

A Generalized Equivalent Circuit Applied to a Tunable Sapphire-Loaded Superconducting Cavity

M.E. Tobar and D.G. Blair. "A Generalized Equivalent Circuit Applied to a Tunable Sapphire-Loaded Superconducting Cavity." 1991 Transactions on Microwave Theory and Techniques 39.9 (Sep. 1991 [T-MTT] (Special Issue on Microwave Applications of Superconductivity)): 1582-1594.

A Lagrangian technique is used to develop an equivalent circuit for a loop-coupled tunable sapphire-loaded superconducting cavity resonator (T-SLOSC) by considering separately the sapphire dielectric and the cavity. Interaction between modes during tuning is characterized by cross coupling components between equivalent mode circuits. Cross-coupling coefficients are defined with respect to the fields in the resonator and equivalent circuit components. Coupling between modal fields is shown to be predominantly reactive in the sapphire-loaded cavity, and can degrade a mode with $Q > 10^8$ by a few orders of magnitude. Interactions between line resonances and T-SLOSC modes are observed to be predominantly resistive through the superconducting niobium probes. Cross-coupling coefficients between some interacting modes have been determined and the reflection coefficients modeled.

[Return to main document.](#)